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Abstract. Symmetry considerations and a direct, Hubbard-Stratonovich type, derivation are used to con-
struct a replica field-theory relevant to the study of the spin glass transition of short range models in a
magnetic field. A mean-field treatment reveals that two different types of transitions exist, whenever the
replica number n is kept larger than zero. The Sherrington-Kirkpatrick critical point in zero magnetic field
between the paramagnet and replica magnet (a replica symmetric phase with a nonzero spin glass order
parameter) separates from the de Almeida-Thouless line, along which replica symmetry breaking occurs.
We argue that for studying the de Almeida-Thouless transition around the upper critical dimension d = 6,
it is necessary to use the generic cubic model with all the three bare masses and eight cubic couplings. The
critical role n may play is also emphasized. To make perturbative calculations feasible, a new representa-
tion of the cubic interaction is introduced. To illustrate the method, we compute the masses in one-loop
order. Some technical details and a list of vertex rules are presented to help future renormalisation-group
calculations.

PACS. 75.10.Nr Spin-glass and other random models – 05.70.Jk Critical point phenomena

1 Introduction

The Ising spin glass is the simplest model still incorpo-
rating all the complexity that more sophisticated disor-
dered systems show up. As such, it has become widely
studied in the last decades. We focus our attention here
to the case where Ising spins interact via Gaussian-
distributed pair interactions [1]. A huge amount of lit-
erature has been accumulated since the seminal paper of
Edwards and Anderson [2], nevertheless the most impor-
tant problems – i.e. the nature and complexity of the
glassy phase, the existence of a transition in nonzero
magnetic field, temperature-chaos, etc. – are still de-
bated. Consensus has been reached only for mean-field
theory, first derived considering an infinite number of
fully-connected Ising spins [3]; its solution by Parisi ex-
plicitly breaks the replica symmetry, resulting in a pic-
ture where the glassy phase can be decomposed into a
set of infinite number and ultrametrically organised pure
states [1]. Despite all efforts made to go beyond mean-field
theory [4], which is certainly valid in infinite dimensions,
finite-dimensional short-ranged systems are much less un-
derstood. Beside the mean-field picture, an alternative de-
scription, the so-called “droplet picture” has emerged in
a series of papers (a list of them, which is certainly not
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fully complete, is provided as Ref. [5]). This approach
claims that replica symmetry breaking is an artifact of
mean-field theory, and the glassy phase consists of only
two pure phases related by a global inversion of the spins.
The droplet theory has gained some support from the field
of mathematical physics [6], the conclusions, however, re-
main disputed [7–9].

A large amount of numerical work1 has been carried
out to resolve the problem, finite-size effects and long re-
laxation times, however, make it difficult to reach a def-
inite conclusion. It is clear that analytical methods – es-
pecially field-theory, as the most powerful of them – are
very important to provide reliable results to settle this
controversy. A direct field-theoretical study of the glassy
phase, however, has proved to be very hard, due to the
complexity of the Gaussian propagators and the ubiquity
of infrared divergences (see [4] and references therein). A
scaling theory for the spin glass phase (just below Tc and
in zero magnetic field) and a proposal to handle the in-
frared problems were put forward in reference [10], still
progress in that direction is very slow.

There is one characteristic of the phase diagram in the
mean-field picture which is definitely absent in a droplet-
like approach, namely the existence of a spin glass tran-

1 An extensive list of references for numerical simulations in
spin glasses can be found in [8].
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sition in a uniform magnetic field [11], known as the de
Almeida-Thouless (AT) transition. This question can be
studied in the symmetric phase, approaching the pre-
sumed transition from the high-temperature side, in this
way eliminating the problems arising from the complexity
of the glassy phase. In the language of replica field-theory,
this will lead to a replica symmetric Lagrangean which is
invariant under any permutation of the n replicas.

The prime purpose of this paper is to provide the
generic field-theoretical model appropriate to a detailed
study of the problem raised above, i.e. the existence of
an AT transition. (In a separate publication [12], the
crossover region around the zero-field critical point is elab-
orated, and the role that a small magnetic field plays in
driving the AT transition is investigated). Here we redis-
cover, at the mean-field level, the importance of the replica
number n in the analysis of the AT transition [13,14]: for
n small but nonvanishing, the AT transition line moves
away from the zero-field critical point, and an intermedi-
ate range of temperature emerges even in zero magnetic
field. This phase – which can be called, by the extension
of the concept of Sherrington [15] to continuous n, the
replica magnet phase – is replica symmetric but still has
a lower symmetry than the paramagnetic phase. Hence
we have two transitions, the first one, in zero field, is an
isolated critical point between the two replica symmet-
ric phases (paramagnet and replica magnet), whereas the
second one is a whole line in H-T plane between replica
magnet and the replica symmetry broken phase. As a re-
sult, we can identify the AT transition as the onset of
instability of the replica magnet phase, and since it has
a lower symmetry than the paramagnet, we must use a
generic replica symmetric Lagrangean to study it by field-
theoretical methods2.

From equations (1, 2), one can immediately realize that
a perturbational calculation based on that Lagrangean is
extremely difficult. This is due to the complicated interac-
tion term with eight different couplings corresponding to
the eight possible cubic invariants, and also to the non-
diagonal Gaussian-propagators with three distinct bare
masses. To overcome these difficulties, we introduce a new
representation of the cubic interaction which is associated
with a block-diagonalization of the quadratic part. The
technique proves to be very efficient, as is displayed in
our example where the one-loop calculation of the mass
operator is presented3.

The outline of the paper is as follows: In Section 2 the
generic cubic Lagrangean for the replica symmetric field-
theory is set forth, first using only symmetry considera-
tions. It is then derived, starting from the lattice system,
and using the standard Hubbard-Stratonovich transfor-

2 We keep n & 0 small but finite almost everywhere through-
out the paper. This is because we want to present formulae for
later calculations in the generic cubic model. For this, however,
the n → 0 limit is rather tricky, due to the degeneracy of the
longitudinal and anomalous modes at zero n.

3 Other methods are also available, like Replica Fourier
Transform [16], or the usage of projections to the subspaces
of the fundamental modes [12,17].

mation. Section 3 is devoted to an analysis of the zero-
loop, i.e. mean-field, results. The zero-field transition, first
discovered by Sherrington and Kirkpatrick [3], proves to
be an isolated singularity of the stationary condition, with
the unique mass vanishing at that point. On the other
hand, one of the three modes becomes massless along the
AT surface, signalling the onset of instability of the generic
replica symmetric phase. In Section 4 we define the new
set of cubic couplings. The introduction of this new repre-
sentation makes it possible to compute Feynmann-graphs
of a perturbative approach; this is illustrated in a one-
loop calculation of the three masses in Section 5. A simple
and convenient non-orthogonal basis is presented in Ap-
pendix A, whereas a detailed list of vertices computed in
this basis is given in Appendix B. This almost complete ta-
ble of vertex rules is published here for later references, an
application for an extended renormalisation group study
of the finite-dimensional AT transition is in progress [18].

2 Cubic replica field-theory for the Ising spin
glass in nonzero magnetic field

After the invention of the renormalization group [19], field
theoretical representations of statistical models, originally
defined on a lattice, became a standard way to study
the behaviour of the systems near phase transitions. The
renormalisation group made it possible to use a pertur-
bative method, the loop expansion, in low enough dimen-
sions, thus providing excellent analytical tools to compute
phase diagrams and critical properties. The extension to
spin glasses came immediately after the replica approach
had been introduced by Edwards and Anderson [2], trans-
forming the originally inhomogeneous system into a ho-
mogeneous one. A Ginzburg-Landau-Wilson continuum
model was first proposed 25 years ago [20,21], then further
investigated by renormalisation methods [22,23]. Its cubic
Lagrangean was derived – for the Ising case – by Bray
and Moore [24] via the Hubbard-Stratonovich transfor-
mation. Two of the present authors applied the same field
theoretical model in their effort to go beyond the mean-
field results, and understand the glassy phase of the finite-
dimensional short range Ising spin glass [4,10]. The mag-
netic field was always zero in the above works, with the
only exception of [21], where it was introduced by a cou-
pling to the magnetization, leaving the Lagrangean un-
changed for the part relevant to the spin glass transition.

Field-theoretical models can be constructed by means
of symmetry arguments, building up the Lagrangean from
all the possible invariants of the relevant symmetry group
of the system. For an Ising spin glass, the fields depend
on a pair of replicas, φαβ = φβα with φαα = 0, and, as a
consequence of the replica trick, any permutation of the n
replicas leaves the Lagrangean unchanged. Discarding all
the terms higher in the order of the φ’s than cubic, we ar-
rive at the following generic replica symmetric Lagrangean
after a search of all the quadratic and cubic invariants:

L = L(2) + L(3),
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where

L(2) =
1
2

∑
p

[(1
2

(paρ)2 +m1

)∑
αβ

φαβp φαβ−p

+m2

∑
αβγ

φαγp φβγ−p +m3

∑
αβγδ

φαβp φγδ−p

]
, (1)

and

L(3) = − 1
6
√
N

∑′

p1p2p3

[
w1

∑
αβγ

φαβp1
φβγp2

φγαp3

+ w2

∑
αβ

φαβp1
φαβp2

φαβp3
+ w3

∑
αβγ

φαβp1
φαβp2

φαγp3

+ w4

∑
αβγδ

φαβp1
φαβp2

φγδp3
+ w5

∑
αβγδ

φαβp1
φαγp2

φβδp3

+ w6

∑
αβγδ

φαβp1
φαγp2

φαδp3
+ w7

∑
αβγδµ

φαγp1
φβγp2

φδµp3

+ w8

∑
αβγδµν

φαβp1
φγδp2

φµνp3

]
. (2)

Momentum summations in the above formulae are over
the reciprocal vectors of a d-dimensional hypercubic lat-
tice with lattice spacing a, consisting of infinitely many
sites N in the thermodynamic limit. The prime in equa-
tion (2) means the constraint of momentum conservation,
p1 + p2 + p3 = 0. Neglecting the fluctuations of fields
with wavelength much smaller than the range ρa of the
exchange interaction between the spins, we confine the
relevant values of momentums in equations (1, 2) around
the center of the Brillouin zone: p < Λ/ρa. The momen-
tum cutoff Λ � 1 makes it possible to expand the non-
local quadratic coupling in L(2), and, as it is common in
field-theoretical studies of phase transitions, we stop after
the first two terms. (The coupling constant of the kinetic
term in equation (1) can be set equal to 1

2 without loss of
generality. See also later.)4

In zero magnetic field, and in the high-temperature
phase where the spin glass order parameter is zero, all
the couplings but m1 and w1 disappear. In this section,
we want to find out the order parameter dependence of
the couplings defining our Lagrangean. We are especially
interested in the general form of the replica field-theory
suitable for studying the de Almeida-Thouless transition
in finite dimensions. Our starting point is a standard
Edwards-Anderson-like [2] model for N Ising spins on a
d-dimensional hypercubic lattice, with a long but finite-
ranged interaction:

H = −
∑
(ij)

Jij√
z
fijsisj −H

∑
i

si. (3)

4 A replica symmetric treatment of the ordered phase was
carried out in references [23,24]. In this case, the finite order
parameter gives rise to a quadratic Lagrangean, even in zero
field, which is a special case of L(2).

The notation fij ≡ f
(
|ri−rj |
ρa

)
was introduced in the

above equation, with the smooth positive function f(x)
which takes the value 1 for x . 1, and decays to zero
sufficiently fast for x > 1, thereby cutting off the inter-
action around |ri − rj | ∼ ρa. Here z = ρd is effectively
the coordination number, i.e. the number of spins within
the interaction radius; expanding quantities in terms of
its negative powers will generate the loop-expansion in
the replica field-theory. Jij are independent, Gaussian
distributed random variables with mean zero and vari-
ance ∆2, and a homogeneous magnetic field H was also
included. Summations are over the pairs (ij) of lattice
sites in the first sum, while over the N lattice sites in the
second one.

In the spirit of the replica trick, we want to com-
pute quantities like the averaged replicated partition func-
tion Zn for some positive integer n, finally deducing spin
glass behaviour from the n → 0 continuum limit. Aver-
aging first over the quenched disorder results in an ef-
fective replica Hamiltonian depending on the spins Sαi ,
α = 1, . . . , n5:

Zn ∼ Tr
{Sαi }

exp
(

1
2

∑
(αβ)

∑
ij

Sαi S
β
i KijS

α
j S

β
j

+
H

kT

∑
α

∑
i

Sαi

)
,

Kij ≡ 1
z

(
∆
kT

)2
f2
ij . A Hubbard-Stratonovich transforma-

tion can help us to get rid of the four-spin interaction
term; the price we have to pay for that is the introduction
of integrals over the “fields” Qαβi :

Zn ∼
[ ∏

(αβ),i

∫
dQαβi

]

× exp
(
− 1

2

∑
(αβ)

QαβK−1Qαβ +
∑
i

ln ζi

)
. (4)

The boldfaced vector and matrix notations in equation (4)
for Qαβ and K−1, respectively, are to simplify the non-
local term in the formula, whereas the one-spin partition
function is defined as follows:

ζi = Tr
{Sα}

exp
(∑

(αβ)

Qαβi SαSβ +
H

kT

∑
α

Sα
)
. (5)

To construct a field-theory appropriate for a perturbation
expansion around the mean-field solution, i.e. around the
infinite range model ρ → ∞, we separate Qαβi into its
homogeneous, non-fluctuating (mean-field) part, and into
its fluctuating part:

Qαβi = Qαβ + φαβi . (6)

5 Throughout the paper, we use different notations for sum-
mations over distinct pairs,

P

(αβ)

=
P

α<β

, and unrestricted sums,

P

αβ

=
P

α

P

β

.
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When expressed in terms of the φ’s, the exponent in equa-
tion (4) will be called −L, and it can be expanded up to
any desired order. Turning to a more convenient represen-
tation of the fields in momentum space, contributions up
to cubic order have the following forms:

L(0) = N

[
1
2
Θ−1

∑
(αβ)

(
Qαβ

)2 − ln ζ
]
, (7)

L(1) =
√
N
∑
(αβ)

[
Θ−1Qαβ − 〈〈SαSβ〉〉

]
φαβp=0 , (8)

L(2) =
1
2

∑
p

∑
(αβ),(γδ)

φαβp Mαβ,γδ(paρ)φγδ−p, (9)

and finally

L(3) = − 1
6
√
N

∑′

p1p2p3

∑
(αβ),(γδ),(µν)

Wαβ,γδ,µνφ
αβ
p1
φγδp2

φµνp3
.

(10)

A Boltzmann-weight with Qαβ, instead of Qαβi , is under-
stood in the definitions of ζ and the one-site effective av-
erage 〈〈. . . 〉〉 in equations (7, 8). Θ−1 is essentially the
temperature squared, or more precisely:

Θ =
(
∆

kT

)2 ∫
f(r)2 ddr. (11)

The momentum-dependent mass, and the momentum-
independent cubic coupling operators are defined as fol-
lows:

Mαβ,γδ(paρ) = K−1
p δKr

αβ,γδ −
[
〈〈SαSβSγSδ〉〉

− 〈〈SαSβ〉〉〈〈SγSδ〉〉
]
, (12)

Wαβ,γδ,µν = 〈〈SαSβSγSδSµSν〉〉
− 〈〈SαSβ〉〉〈〈SγSδSµSν〉〉
− 〈〈SγSδ〉〉〈〈SαSβSµSν〉〉
− 〈〈SµSν〉〉〈〈SαSβSγSδ〉〉
+ 2〈〈SαSβ〉〉〈〈SγSδ〉〉〈〈SµSν〉〉 · (13)

The Kronecker delta in equation (12) represents the n(n−
1)/2-dimensional unit matrix, whose prefactor comes from
the Fourier-transform of Kij :

Kp =
1
N

∑
ij

eip(ri−rj)Kij

=
1
z

(
∆

kT

)2 1
N

∑
ij

eip(ri−rj)f

(
|ri − rj |
ρa

)2

−→
(
∆

kT

)2 ∫
ei(paρ)rf(r)2 ddr. (14)

The arrow in the above formula means the double limit-
ing procedure of the thermodynamic limit (N →∞), and

continuum limit (a → 0). The theory resulting then is a
field-theory with all the thermodynamic functions scaling
correctly with N , and the lattice constant a disappear-
ing from the momentum integrals after introducing the
new variable p̃ ≡ paρ, with the upper momentum-cutoff
becoming Λ in p̃ space. The range ρ of the original interac-
tion, however, survives: a perturbative loop-expansion can
be generated where every loop in a Feynmann-diagram
contributes a z−1 = ρ−d factor.

It is rather common in field-theoretical studies to nor-
malize the fields such that the kinetic term in the Gaussian
part of the Lagrangean (that proportional to the squared
momentum) be exactly p̃2 times the unit matrix. This can
be simply reached after expanding K−1

p , equation (14),
and introducing the new fields by

c φp → φp, (15)

where

c = (2d)−
1
2

(∫
r2f(r)2 ddr

) 1
2∫

f(r)2 ddr

(
kT

∆

)
· (16)

A corresponding redefinition of the mass operator and cu-
bic interaction,

1
c2
M →M and

1
c3
W →W, (17)

leaves the form of equations (9, 10) unchanged. Neglecting
short-wavelength fluctuations, the mass-operator in equa-
tion (12) can be expanded for p̃� 1. The commonly used
truncation at the kinetic term provides:

Mαβ,γδ(p̃) = C(d)
[
δKr
αβ,γδ −Θ

(
〈〈SαSβSγSδ〉〉

−〈〈SαSβ〉〉〈〈SγSδ〉〉
)]

+ p̃2 δKr
αβ,γδ, (18)

where C(d) = 2d
∫
f(r)2 ddr/

∫
r2f(r)2 ddr is a smooth

function of dimensionality, but independent of the tem-
perature and magnetic field. As such, its concrete value
is irrelevant, and a simple adjustment of the cutoff func-
tion f(r) can make it equal to unity.

A replica symmetric field-theory – for the study of the
massive high-temperature phase, and/or the massless crit-
ical manifolds – can be obtained by choosing a replica
symmetric mean-field value Qαβ ≡ Q in equation (6). The
stationarity condition L(1) ≡ 0 gives us an implicit equa-
tion for Q (see Eq. (8)):

Θ−1Q = 〈〈SαSβ〉〉

=
Tr
{Sα}

(
SαSβe

P
(αβ) QS

αSβ+ H
kT

P
α S

α
)

Tr
{Sα}

(
e
P

(αβ) QS
αSβ+ H

kT

P
α S

α
) , α 6= β.

(19)

Q enters the definition of the mass operator, equation (18),
and the cubic interaction operator, equation (13), through
the Boltzmann-weight in the averages 〈〈. . . 〉〉. Replica
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Table 1. The relationship between the cubic couplings w’s of
equation (2) and W ’s of equation (10).

w1 = W1 − 3W5 + 3W7 −W8

w2 =
1

2
W2 − 3W3 +

3

2
W4 + 3W5 + 2W6 − 6W7 + 2W8

w3 = 3W3 − 3W4 − 6W5 − 3W6 + 15W7 − 6W8

w4 =
3

4
W4 −

3

2
W7 +

3

4
W8

w5 = 3W5 − 6W7 + 3W8

w6 = W6 − 3W7 + 2W8

w7 =
3

2
W7 −

3

2
W8

w8 =
1

8
W8

symmetry is induced also for these operators, resulting
in the three different components of the mass:

Mαβ,αβ(p̃) = M1 + p̃2,

Mαγ,βγ(p̃) = M2 , (20)
Mαβ,γδ(p̃) = M3 ;

and the eight different components of the cubic interaction
operator:

Wαβ,βγ,γα = W1 , Wαβ,αβ,αβ = W2 ,

Wαβ,αβ,αγ = W3 , Wαβ,αβ,γδ = W4 ,

Wαβ,αγ,βδ = W5 , Wαβ,αγ,αδ = W6 ,

Wαγ,βγ,δµ = W7 , Wαβ,γδ,µν = W8 . (21)

L(2) of equation (9), together with equation (20), is
equivalent with that of equation (1), provided the two sets
of masses are related by the following expressions:

m1 =
1
2

(M1 − 2M2 +M3) , (22)

m2 = M2 −M3 , (23)

m3 =
1
4
M3 . (24)

Similarly, equations (2, 10) are two different representa-
tions of L(3). Using equation (21), a one to one correspon-
dence between the two sets of cubic couplings, w’s and
W ’s, can be deduced by a somewhat lengthy but elemen-
tary calculation. The results are listed in Table 1.

3 Analysis of the stationarity conditions
and bare masses

It is easy to recognize that, after a simple rescaling of the
temperature, equation (19) coincides with the replica sym-
metric mean-field equation of Sherrington and Kirkpatrick
(SK) [3,25] for the order parameter of the Ising spin glass
on a fully-connected lattice. This may not be surprising:

the most direct way to define mean-field theory on a d-
dimensional hypercubic lattice is letting ρ, the range of
interaction, go to infinity, thus neglecting all the loop
corrections to the equation of state [26,27]. The solu-
tion Q of equation (19) has, however, an application that
goes beyond mean-field theory: it enters the mass oper-
ator and interaction components in the formulae equa-
tions (18, 13), respectively, through the effective average
〈〈. . . 〉〉. Although a field-theory emerging from this proce-
dure has a direct connection to the original parameters,
such as temperature, magnetic field and also replica num-
ber n, renormalisation will reshuffle the masses and cou-
plings, possibly forcing them into some fixed point.

Following references [3,25], equation (19) can be cast
into a more convenient form:

Θ−1Q =∫ du√
2π

e−
u2
2 tanh2(

√
Qu+H/kT ) coshn(

√
Qu+H/kT )∫ du√

2π
e−

u2
2 coshn(

√
Qu+H/kT )

(25)

= tanh2(
√
Qu+H/kT ).

The shorthand notation

tanhk(. . . ) ≡∫ du√
2π

e−
u2
2 tanhk(. . . ) coshn(

√
Qu+H/kT )∫ du√

2π
e−

u2
2 coshn

(√
Qu+H/kT

) (26)

has been introduced for later use. By equation (25), Q is
implicitly given as a function of temperature, magnetic
field and replica number. One can easily find the SK spin
glass transition point (Θ = 1, H = 0) as an isolated sin-
gularity for any given n close to zero. (Keeping n finite
is for later use. At the moment, we must notice that this
singularity is rather unaffected by the n → 0 limit.) The
relevant, positive, solution for H = 0 is

Q =

0 for t > 0,

− 1
2−n t+

[
− n−3

(n−2)2 + 1
3(n−2)3

]
t2 + . . . for t < 0;

(27)

where the new temperature scale t ≡ Θ−1 − 1 > 0 (< 0)
in the disordered (spin glass) phase, respectively. As dis-
played in Figure 1, one can join up smoothly the two
regimes by-passing the critical point, like in ordinary crit-
ical phenomena6.

6 It is obvious from equation (25) that Q = 0 is always a
solution for zero magnetic field, independently of t and n. The
Q = 0 solution for t < 0, however, defines the negative Q
branch (starting from point G in Figure 1a with Q = 0, and
following the dotted curve, you end up at P with Q < 0) which
is non-physical. The two branches meet at the SK transition
point.



366 The European Physical Journal B

Fig. 1. (a): Mean-field phase diagram for n = 0. Starting from the paramagnetic state P with Q = 0, and following the dotted
curve, the SK critical point (t = H = 0) can be by-passed ending in the glassy state G with Q > 0. (b): Mean-field phase
diagram for n & 0. There is a temperature range even in zero field, tAT < t < 0, where Q is positive and the replica symmetric
state is stable.

To go beyond a mean-field solution, and build loops,
one must have well-defined Gaussian propagators, i.e. the
eigenvalues of the mass operator must be non-negative.
A generic replica symmetric mass operator, like that in
equation (20), was diagonalised years ago [23,24] with the
following expressions for the eigenvalues (which will play
the role of bare masses here):

rR = M1 − 2M2 +M3, (28)
rA = M1 + (n− 4)M2 − (n− 3)M3, (29)

rL = M1 + 2(n− 2)M2 +
(n− 2)(n− 3)

2
M3. (30)

The indices R, A and L stand for replicon, anomalous
and longitudinal, respectively, each referring to the cor-
responding family of eigenmodes (see Ref. [24] and also
later sections). From equations (18, 20), and using the
stationarity condition (19), the following expressions are
obtained for the bare masses:

rR =
t

1 + t
+ 2Q− 1

1 + t
tanh4(

√
Qu+H/kT ), (31)

rA = rR + (n− 2)
[

1
1 + t

tanh4(
√
Qu+H/kT )−Q

]
,

(32)

rL = rR +
n− 1

2

[
− (n− 4)

1
1 + t

tanh4(
√
Qu+H/kT )

− 4Q+ n(1 + t)Q2

]
. (33)

An expansion below the transition provides, in zero field,

rR =
n

2
(1 +

n

2
+ . . . ) (−t) + (−1

3
+ . . . ) t2 + . . . , (34)

rA = (1 +
n

2
+ . . . ) (−t) + (− 5

12
+ . . . ) t2 + . . . , (35)

rL = (−t) + (− 5
12

+ . . . ) t2 + . . . . (36)

(The n-dependent coefficients are displayed in an ex-
panded form for showing clearly the signs for small n.

The complete n-dependence, however, is easily found.)
The hitherto degenerate masses split when passing the SK
transition singularity (where they are zero) and emerge
positively in the spin glass phase for any n & 0. rR starts,
however, with a small slope proportional to n, and be-
comes massless again at the AT surface tAT = − 3

2n+ . . . ,
where instability of the replica symmetric phase begins.
This result was first derived by Kondor [13], the aspect
we wish to emphasize here is the existence of an interme-
diary temperature range where replica symmetry persists,
see Figure 1, though, as a result of a nonzero Q, the level
of symmetry is lower, leading, at the mean-field level, to
the splitting of the bare masses.

By definition, rR ≡ 0 on the AT-surface. From equa-
tions (25, 31), the magnetic field can be expressed as a
double series for small −t and n; the leading, cubic, term
is as follows:

(H/kT )2 =
1
6

(−t)3 − 1
4
nt2 = −3

8
n2(t− tAT)

+
1
2
n(t− tAT)2 − 1

6
(t− tAT)3.

This can be cast into a scaling form

(H/kT )2 = tτϕ(
n

tκ
), t, n→ 0, (37)

where the exponents have now their mean-field values
τ = 3 and κ = 1, and ϕ(. . . ) is the scaling function char-
acterising the AT-surface.

On the basis of the above mean-field analysis, we can
define two different, though both replica symmetric, cu-
bic field-theories relevant to describe spin glass transitions
of different types in low enough dimensions (d certainly
smaller than eight):

– The zero-field model – H ≡ 0, t ≥ 0 and n & 0 – im-
plies, through equation (27), Q ≡ 0, leading to degen-
erate bare masses rR = rA = rL, see equations (31, 32)
and (33). It is easy to verify using equations (13, 21)
that all the W ’s but W1 are zero, and the same is
true, by Table 1, for the small w’s. Let us put down
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explicitly the definition of the cubic field theory for the
zero-field transition from the paramagnetic phase:

r ≡rR = rA = rL;
w ≡w1, wi = 0, i = 2, . . . , 8.

(38)

At the mean-field level, a massless state is reached
along the critical line H = 0, t = 0 and n & 0;
the replica number being a rather innocent parame-
ter around zero. We expect this property to remain
for short-ranged (finite-dimensional) systems, and in-
deed, ε-expansion results have supported this idea [28].
(This kind of replica field-theory was studied in all the
references [20–24,28].)

– The second model, which is in fact the most general
cubic field-theory with an unbroken replica symme-
try, has all the three masses mi and eight couplings
wi different. At the mean-field level, it corresponds to
a nonzero Q which is always such when a magnetic
field is switched on. More surprisingly, however, there
is a whole range of temperatures tAT ≤ t < 0 even in
zero field where the bare parameters correspond to this
more general model. Criticality is induced, at least at
the mean-field level, by the masslessness of the repli-
con mode on the de Almeida-Thouless surface. The
replica number n is now a crucially important pa-
rameter; a fact clearly shown by the scaling formula
(37). How fluctuations will modify this picture is a
prime problem in spin glass theory. There has been two
attempts, at least to our knowledge, addressing this
question [17,29]. In reference [17] fluctuations were re-
stricted to the replicon subspace; in our language this
means for the masses that rA = rL = ∞ and rR criti-
cal, while all the cubic couplings were zero but w1 and
w2. The effect of a small magnetic field was introduced
in reference [29] by shifting the bare masses from their
zero-field values (more precisely, beside m1, m2 be-
came massive too), the couplings remained, however,
unchanged. The replica number was effectively set to
zero in these works. Here we wish to emphasize the
role n may play in a search for a de Almeida-Thouless
transition in finite-dimensional systems.

4 A canonical representation of the cubic
interaction

In a field-theory with more than one mass, as in the generic
replica symmetric system introduced in the previous sec-
tions, critical manifolds can be classified by their massless
eigenmodes. In this case, it is more convenient to use di-
rectly the eigenvalues of the mass operator (rR, rA and
rL; equations (28, 29) and (30)), instead of the sets m’s or
M ’s. At that point it is natural to ask what will happen
with the interaction vertices whose legs join the, by this
time block-diagonalized, propagators. We show in this sec-
tion how the transformation that block-diagonalizes the
quadratic part of the Lagrangean into “modes” induces a
new set of cubic couplings describing how these modes in-
teract. Our replicated field-theory becomes more tractable
after using these “canonical” cubic parameters.

The 1
2n(n−1)-dimensional vectorspace spanned by the

two-replica fields φαβ has the simple structure being a
direct sum of the subspaces called longitudinal, anomalous
and replicon. Their definitions are as follows (φαβ = φβα

and φαα = 0 are understood everywhere, of course):
– The longitudinal (L) subspace consists of replica sym-

metric vectors, i.e. independent of replica indices. Each
element from this subspace corresponds to a scalar φ :

φαβL = φ, (39)

and it is obviously one-dimensional.
– Any element of the anomalous (A) subspace can be

represented by a one-replica field φα, i.e. by a vector
restricted, however, by the condition∑

α

φα = 0. (40)

A generic anomalous field can now be written as

φαβA =
1
2

(φα + φβ). (41)

As a result of condition (40), the anomalous subspace
is n− 1-dimensional.

– True two-replica fields, loosely speaking tensors, con-
stitute the replicon (R) subspace with the restriction∑

β

φαβR = 0 for any α = 1 . . . n. (42)

From the n equations above follows that the number of
independent φαβR is 1

2n(n−1)−n = 1
2n(n−3), rendering

the replicon subspace 1
2n(n− 3)-dimensional.

A generic field φαβ can always be decomposed into the
sum

φαβ = φαβL + φαβA + φαβR . (43)

It is straightforward to see that the subspaces defined
above give the exact diagonalisation of a generic replica
symmetric matrix, as defined in the equations of (20), i.e.∑

(γδ)

Mαβ,γδφ
γδ
i = riφ

αβ
i , i = L,A,R, (44)

the eigenvalues given in equations (30, 29) and (28), re-
spectively. For a generalization to higher order operators,
the matrix-element of M between two arbitrary vectors
φαβ and ψαβ will be computed after having represented
them by the longitudinal scalar, anomalous vector and
replicon tensor, as explained above (see Eqs. (39, 41)
and (43)). An expression in terms of the three second-
order invariants φψ,

∑
α φ

αψα and
∑
αβ φ

αβ
R ψαβR arises:

M{φ,ψ} ≡
∑

(αβ),(γδ)

Mαβ,γδφ
αβψγδ

=
1
2
rR
∑
αβ

φαβR ψαβR

+
n− 2

4
rA
∑
α

φαψα +
n(n− 1)

2
rLφψ (45)
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(to get the anomalous term, the restriction (40) has been
used). Except for numerical factors, the corresponding
eigenvalues appear as the coefficients of the three possible
second order invariants; viz. RR, AA and LL.

The most important point we can learn from equa-
tion (45) is a complete factorization of a matrixelement,
provided φ and ψ are chosen from one of the subspaces L,
A or R; i.e.

M{φ,ψ} = {expression of mass components}
× {invariant composed of φ and ψ} · (46)

Generalization to a cubic replica symmetric operator, as
defined in equation (21), is straightforward. The analogue
of the matrixelement can be easily defined by

W{φ,ψ,χ} ≡
∑

(αβ),(γδ),(µν)

Wαβ,γδ,µνφ
αβψγδχµν . (47)

Taking each of the fields φ, ψ and χ from one of the sub-
spaces L, A or R, the nonzero values obtained can be listed
as follows:

WRRR = g1

∑
αβγ

φαβψβγχγα +
1
2
g2

∑
αβ

φαβψαβχαβ ,

WRRA = g3

∑
αβ

φαβψαβχα,

WRRL = g4

∑
αβ

φαβψαβχ,

WRAA = g5

∑
αβ

φαβψαχβ ,

WAAA = g6

∑
α

φαψαχα,

WAAL = g7

∑
α

φαψαχ,

WLLL = g8 φψχ.
(48)

Symmetry makes the remaining WRAL, WRLL and WALL

all identically zero. As for the masses, a complete factor-
ization occurs in the above formula, except the RRR ver-
tex7. We prefer the name “canonical” for the set of cubic
parameters g emerging in the above formulas, as they are,
in some sense, an extension of the notion of eigenvalues
to the cubic interaction term. After a somewhat lengthy
calculation, we obtained the set of equations for the gi in
terms of the Wi, i = 1, . . . , 8, which are the counterparts
of equations (28, 29) and (30). (We omit to display these
rather complicated, and not very instructive, expressions
here; they can be easily obtained from equations (49a–h)
below and using Tab. 1).

Comparing equations (2, 48), a one to one correspon-
dence between a wi and a gi, i = 1, . . . , 8, is obvious.

7 The reason for that is the two different cubic invariants we
can construct from replicon fields; see the first line of equa-
tion (48).

When expressing the g’s in terms of the w’s, instead of the
W ’s, not only the formulas become simpler, but a clear R
→ A → L hierarchy emerges:

g1 = w1, (49a)
g2 = 2w2, (49b)

g3 = −w1 + w2 +
n− 2

6
w3, (49c)

g4 = −w1 + w2 +
n− 1

3
w3 +

n(n− 1)
3

w4, (49d)

g5 =
n− 4

4
w1 +

1
2
w2 +

n− 2
6

w3 +
(n− 2)2

12
w5, (49e)

g6 = −3n− 8
4

w1 +
n− 4

4
w2 +

(n− 2)(n− 4)
8

w3

− (n− 2)2

4
w5 +

(n− 2)3

8
w6, (49f)

g7 =
n− 2

2

[
n− 4

2
w1 + w2 +

2n− 3
3

w3

+
n(n− 1)

3
w4 +

(n− 2)(2n− 3)
6

w5

+
(n− 1)(n− 2)

2
w6 +

n(n− 1)(n− 2)
6

w7

]
, (49g)

g8 = n(n− 1)
[
(n− 2)w1 + w2 + (n− 1)w3

+ n(n− 1)w4 + (n− 1)2w5 + (n− 1)2w6

+ n(n− 1)2w7 + n2(n− 1)2w8

]
. (49h)

5 Illustration of the technique: one-loop
calculation of the masses

We apply the standard definition of the mass operator,
i.e. it is the zero momentum limit of the inverse of the
two-point function:

Γαβ,γδ ≡ lim
p→0

[
G−1(p)

]
αβ,γδ

(50)

where the connected two-point function G is the average[
G(p)

]
αβ,γδ

≡ 〈φαβp φγδ−p〉 − 〈φαβp 〉〈φ
γδ
−p〉 (51)

taken with the statistical weight ∼ e−L, L = L(2) + L(3);
see equations (1, 2). Dyson’s equation for Γ allows us to
compute it perturbatively:

Γαβ,γδ = Mαβ,γδ(p̃ = 0)−Σαβ,γδ(p̃ = 0), (52)

where the mean-field mass operator Mαβ,γδ has been de-
fined in equations (18, 20), whereas the self-energy Σ con-
tains all the one-particle irreducible graphs to the two-
point function, with external lines omitted. Up to leading,
one-loop, order it is given as the simple “bubble” diagram:

Σαβ,γδ(p̃ = 0) =
1
2z

∫ Λ ddp̃
(2π)d

∑
(α′β′),(γ′δ′)

(α′′β′′)(γ′′δ′′)

Wαβ,α′β′,α′′β′′

×G(0)
α′β′,γ′δ′(p̃)G

(0)
α′′β′′,γ′′δ′′(p̃)Wγδ,γ′δ′,γ′′δ′′ (53)
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where the free propagator G(0) is defined by

G
(0)
αβ,γδ(p̃) ≡

[
M−1(p̃)

]
αβ,γδ

, (54)

see equations (18, 20), and the bare vertices, W ’s, have
been introduced in equations (10, 13) and (21).

To compute the replica sum in equation (53), we must
overcome the problem of having non-diagonal free propa-
gators. This project can be easily accomplished by calcu-
lating Σm,n, instead of Σαβ,γδ, defined as:

Σm,n ≡
∑

(αβ),(γδ)

φαβm Σαβ,γδ φ
γδ
n , (55)

φm and φn taken from the non-orthogonal basis discussed
in Appendix A. Exploiting the completeness of both this
basis and its biorthogonal counterpart8, we can transform
Σm,n into a representation with diagonal free propagators:

G
(0)
m,ñ ≡

∑
(αβ),(γδ)

φαβm G
(0)
αβ,γδ φ̃

γδ
n = G(0)

m δKr
mn (56)

(a “tilde” refers always to a member of the reciprocal ba-
sis). G(0)

m , as it is the eigenvalue of the free propagator
matrix, can be simply related, through equation (54), to
one of the three bare masses of equations (28, 29) and (30):

G(0)
m (p̃) =

1
rm + p̃2

, (57)

rm = rR, rA or rL depending on the subspace m belongs
to (see Appendix A).

We can now propose a simple graphical representation
for Σm,n by introducing arrowed lines for the free propa-
gators G(0) joining interaction vertices W :

G(0)
m ⇔ -m .

Using the convention of Appendix B concerning the mean-
ing of inward and outward arrows, we can draw for Σm,n:

@
�

�
@

- �m n

m′

m′′

which can be spelled out explicitly as:

Σm,n =

1
2z

∫ Λ ddp̃
(2π)d

∑
m′,m′′

Wm,m′,m̃′′Wn,m′′,m̃′ G
(0)
m′ (p̃)G

(0)
m′′(p̃).

(58)

8 What we use in the derivation of this formula is the de-
composition of the unit operator: δKr

αβ,γδ =
P
m φ

αβ
m φ̃γδm =

P
m φ̃

αβ
m φγδm .

(Summations are over the set of n(n− 1)/2 modes of Ap-
pendix A.) Orthogonality of the different subspaces re-
stricts the number of nonzero elements of the matrix Σm,n
to the cases where m and n belong to the same family R, A
or L. To compute the three eigenvalues of the self-energy,
we can make the simplest possible choices for m and n, i.e.

Σ(µν),(µν) = ΣR

∑
(αβ)

φαβ(µν)φ
αβ
(µν)

=
(n− 1)(n− 2)2(n− 3)

4
ΣR , (59)

Σ(µ),(µ) = ΣA

∑
(αβ)

φαβ(µ)φ
αβ
(µ)

=
n(n− 1)(n− 2)

4
ΣA , (60)

Σ(L),(L) = ΣL

∑
(αβ)

φαβ(L)φ
αβ
(L) =

n(n− 1)
2

ΣL . (61)

(The computation of the scalar products above is rela-
tively easy using the definitions of the basis functions in
Appendix A.) An extensive use of the table of cubic ver-
tices Wm,m′,m̃′′ in Appendix B makes it possible to com-
pute the left-hand sides; the feasibility of the calculation
is, however, due to the selection rule we explain in that ap-
pendix. The results can be summarized by displaying the
eigenmodes of the mass operator Γ , by means of equa-
tion (52), valid to first order in 1/z:

ΓR = rR −
{[n4 − 8n3 + 19n2 − 4n− 16

(n− 1)(n− 2)2
g2

1

+
2(3n2 − 15n+ 16)

(n− 1)(n− 2)2
g1g2

+
n3 − 9n2 + 26n− 22

2(n− 1)(n− 2)2
g2

2

]
IRR

+
8(n− 1)(n− 4)
n(n− 2)2

g2
3 IRA +

8
n(n− 1)

g2
4 IRL

+
16

(n− 2)2
g2

5 IAA

}
; (62)

ΓA = rA −
{

2(n− 3)(n− 4)
(n− 2)2

g2
3 IRR

+
16n(n− 3)

(n− 1)(n− 2)2
g2

5 IRA +
32

n(n− 2)2
g2

6 IAA

+
32

n(n− 1)(n− 2)2
g2

7 IAL

}
; (63)

ΓL = rL −
{

2(n− 3)
n− 1

g2
4 IRR +

16
n(n− 2)2

g2
7 IAA

+
4

n3(n− 1)3
g2

8 ILL

}
· (64)

To help the reader to understand the structure of the cor-
rections to the masses, we introduced the short-cut nota-
tion

Iss′ ≡
1
z

∫ Λ ddp̃
(2π)d

1
rs + p̃2

1
rs′ + p̃2
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for the momentum integrals; s and s′ correspond to one of
the subspaces R, A or L. By means of the transformation
rules between the g and w couplings, equations (49a–h),
the above equations for the masses can be easily expressed
in terms of the w’s too.

This work has been supported by the Hungarian Science Fund
(OTKA), Grant No. T032424.

Appendix A: A simple non-orthogonal basis

For applying the canonical vertices defined in equa-
tions (47, 48), it is necessary to introduce a basis in
each of the subspaces; an obviously nonunique task. The
non-orthogonal basis defined below is not only the sim-
plest9, but cubic vertices evaluated in this basis will have
a remarkable property, a kind of a selection rule involv-
ing replica numbers, making computation of Feynmann-
graphs feasible (see Appendix B).

A member of this non-orthogonal basis will be denoted
by φαβm , whereas its biorthogonal10 counterpart, a member
of the reciprocal basis, as φ̃αβm , where m stands for the
modes in the subspaces L, A and R as follows:
– The L subspace is one-dimensional, i.e. m↔ (L).
– m runs the single replica numbers, except one (which

we choose the nth), for the n−1-dimensional A space:
m↔ (µ), µ = 1, . . . , n− 1.

– In case of replicon modes, m corresponds to a pair
of replicas, m ↔ (µν), with µ,ν = 1, . . . , n − 1 and
µ 6= ν. To ensure the correct dimensionality n(n−3)/2
imposed by condition (42), we have to pick out an
arbitrarily chosen pair (µ̄ν̄), giving for the number of
replicon modes:

(n− 1)(n− 2)
2

− 1 =
n(n− 3)

2
·

To sum up, there are two types of replicon modes:

m↔


(µν), µ, ν = 1, . . . , n− 1;
µ, ν 6= µ̄ or ν̄,

(µµ̄) or (µν̄), µ = 1, . . . , n− 1;
µ 6= µ̄ or ν̄.

(65)

In what follows we want to collect the results, omitting
any proof.

L subspace:

φαβ(L) ≡ φ(L) = 1; φ̃αβ(L) ≡ φ̃(L) =
2

n(n− 1)
· (66)

9 This time, simplicity and orthogonality contradict each
other. An orthogonal, still rather complicated system was pro-
posed years ago [30].
10 Biorthogonality has the usual definition

P
(αβ) φ

αβ
m φ̃αβm′ =

δKr
mm′ .

A subspace:

φαβ(µ) =

{
1 if α, β 6= µ,

−n−2
2 if α = µ or β = µ;

φ̃αβ(µ) =
4

n2(n− 2)

[
φαβ(µ) +

n−1∑
ν=1

φαβ(ν)

]
. (67)

The one-replica objects, introduced in equation (41), rep-
resenting them are

φα(µ) =

{
1 if α 6= µ,

−(n− 1) if α = µ;

φ̃α(µ) =


0 if α 6= µ, n,

− 4
n(n−2) if α = µ,

4
n(n−2) if α = n.

(68)

R subspace:

φαβ(µν) =
1 if α, β 6= µ, ν ,

−n−3
2 if there is one common replica index of

the two pairs α, β and µ, ν ,
(n−2)(n−3)

2 if the two pairs α, β and µ, ν are identical.
(69)

In the reciprocal basis, we have different forms for the two
types of replicon modes defined in equation (65):

type-I

φ̃αβ(µν) =


2

(n−1)(n−2) if (αβ)=(µν) or (µ̄n) or (ν̄n),

− 2
(n−1)(n−2) if (αβ)=(µ̄ν̄) or (µn) or (νn),

0 otherwise;
(70)

type-II

φ̃αβ(µ̄µ) =


2

(n−1)(n−2) if (αβ) = (µ̄µ) or (ν̄n),

− 2
(n−1)(n−2) if (αβ) = (µ̄ν̄) or (µn),

0 otherwise.
(71)

Appendix B: Vertex rules

For a cubic vertex with φ = φm, ψ = φm′ and χ = φ̃m′′ in
equation (47) (m, m′ and m′′ referring to the modes intro-
duced in Appendix A), a simple graphical representation
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can be given, namely

@
@R

�
��

-
m

m’

m” ;

inward (outward) arrows correspond to ordinary (recipro-
cal) basis functions, respectively. Such vertices have the
remarkable property, a kind of a selection rule, that the
replica numbers attached to the mode m′′11 must occur
either in m or in m′; otherwise the vertex is zero.

Hereinafter we give a list of the nonzero vertices. To
confine the extent of the paper, vertices with replicon
modes of type-II will also be omitted, although they are
available; these vertices are necessary only for a calcula-
tion higher order than one-loop. The presentation follows
the order introduced in equation (48), different symbols
are used to indicate different replicas.

RRR:

@R
��
-

µν

ωρ

µν

= −2g1 + g2
@R
��
-

µν

ωρ

µω

=
n− 1

2(n− 2)
(−ng1 + g2)

@R
��
-

µω

νω

µν

=
n− 1

2(n− 2)
[
(n− 1)(n− 4)g1 + g2

]

@R
��
-

µω

νω

µω

=
1

2(n− 2)
[
(n2 − 9n+ 12)g1 − (n2 − 6n+ 7)g2

]
@R
��
-

µν

µν

µν=
1

2(n− 2)
[
2(3n2 − 15n+ 16)g1

+(n3 − 9n2 + 26n− 22)g2

]
RRA:

@R
��
-

µν

ωρ

µ

= −2(n− 1)2

n(n− 2)
g3

@R
��
-

µω

νω

ω= @R
��
-

µω

νω

µ

=
(n− 1)2(n− 4)

n(n− 2)
g3

11 It is a single number (µ) if m′′ is an anomalous mode,
whereas replicon modes are labeled by a pair of replicas, as
explained in Appendix A, (µν) or (µµ̄). There is, of course, no
restriction if m′′ is the longitudinal mode.

@R
��
-

µν

µν

µ

= − (n− 1)2(n− 3)(n− 4)
n(n− 2)

g3

@R
��
-

µν

ω

µν

= 2g3
@R
��
-

µν

ω

µω

=
n

n− 2
g3

@R
��
-

µν

µ

µν

= − (n− 1)(n− 4)
n− 2
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